reading and writing data

A short description of the post.

  1. load the R packages we will use

2.Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post

  1. Assign the locations of the file to file_csv. The data should be in the same directory as this file

-Read the data into R and assign it to emissions

file_csv <- here("_posts",
                 "2021-03-03-reading-and-writing-data",
                 "co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)

4.Show the first 10 rows (observations of) emissions

emissions
# A tibble: 22,383 x 4
   Entity      Code   Year `Per capita CO2 emissions`
   <chr>       <chr> <dbl>                      <dbl>
 1 Afghanistan AFG    1949                    0.00191
 2 Afghanistan AFG    1950                    0.0109 
 3 Afghanistan AFG    1951                    0.0117 
 4 Afghanistan AFG    1952                    0.0115 
 5 Afghanistan AFG    1953                    0.0132 
 6 Afghanistan AFG    1954                    0.0130 
 7 Afghanistan AFG    1955                    0.0186 
 8 Afghanistan AFG    1956                    0.0218 
 9 Afghanistan AFG    1957                    0.0343 
10 Afghanistan AFG    1958                    0.0380 
# … with 22,373 more rows
  1. Start with emissions data THEN

-use ‘clean_names’ from the janitor package to make the names easier to work with -assign the output to tidy_emissions -show the first 10 rows of tidy_emissions

tidy_emissions <- emissions %>%
  clean_names()

tidy_emissions
# A tibble: 22,383 x 4
   entity      code   year per_capita_co2_emissions
   <chr>       <chr> <dbl>                    <dbl>
 1 Afghanistan AFG    1949                  0.00191
 2 Afghanistan AFG    1950                  0.0109 
 3 Afghanistan AFG    1951                  0.0117 
 4 Afghanistan AFG    1952                  0.0115 
 5 Afghanistan AFG    1953                  0.0132 
 6 Afghanistan AFG    1954                  0.0130 
 7 Afghanistan AFG    1955                  0.0186 
 8 Afghanistan AFG    1956                  0.0218 
 9 Afghanistan AFG    1957                  0.0343 
10 Afghanistan AFG    1958                  0.0380 
# … with 22,373 more rows
  1. Start with the tidy_emissions THEN -use filter to extract rows with year == 1988 THEN -use skim to calculate the descriptive statistics
tidy_emissions %>%
  filter(year == 1988) %>%
  skim()
Table 1: Data summary
Name Piped data
Number of rows 209
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 209 0
code 12 0.94 3 8 0 197 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1988.00 0.00 1988.00 1988.00 1988.00 1988.00 1988.00 ▁▁▇▁▁
per_capita_co2_emissions 0 1 5.07 5.86 0.01 0.54 2.82 8.11 29.56 ▇▃▁▁▁
  1. 12 observations have a missing code. How are these observations different? -start with tidy_emissions then extract rows with year == 1988 and are missing a code
tidy_emissions %>%
  filter(year ==1988, is.na(code))
# A tibble: 12 x 4
   entity                     code   year per_capita_co2_emissions
   <chr>                      <chr> <dbl>                    <dbl>
 1 Africa                     <NA>   1988                     1.23
 2 Asia                       <NA>   1988                     1.98
 3 Asia (excl. China & India) <NA>   1988                     2.94
 4 EU-27                      <NA>   1988                     9.07
 5 EU-28                      <NA>   1988                     9.18
 6 Europe                     <NA>   1988                    10.9 
 7 Europe (excl. EU-27)       <NA>   1988                    13.4 
 8 Europe (excl. EU-28)       <NA>   1988                    14.2 
 9 North America              <NA>   1988                    13.8 
10 North America (excl. USA)  <NA>   1988                     5.06
11 Oceania                    <NA>   1988                    11.2 
12 South America              <NA>   1988                     2.04

8.Start with tidy_emissions THEN

-use filter to extract rows with year == 1988 and without missing codes THEN -use select to drop the year variable THEN -use rename to change the variable entity to country -assign the output to emissions_1988

emissions_1988 <- tidy_emissions %>%
  filter(year == 1988, !is.na(code)) %>%
  select(-year) %>% 
  rename(country=entity)

9.Which 15 countries have the highest per_capita_co2_emissions?

-start with emissions_1988 THEN -use slice_max to extract the 15 rows with the per_capita_co2_emissions -assign the output to max_15_emitters

max_15_emitters <- emissions_1988 %>%
  slice_max(per_capita_co2_emissions, n =15)

10.Which 15 countries have the lowest per_capita_co2_emissions?

-start with emissions_1988 THEN -use slice_min to extract the 15 rows with the lowest values -assign the output to min_15_emitters

min_15_emitters <- emissions_1988 %>%
  slice_min(per_capita_co2_emissions, n=15)

11.Use bind_rows to bind together the max_15_emitters and min_15_emitters - assign the output to max_min_15

max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export max_min_15 to 3 file formats
    max_min_15 %>% write_csv("max_min_15.csv") #comma-separated values 
    max_min_15 %>% write_tsv("max_min_15.tsv") #tab separated 
    max_min_15 %>% write_delim("max_min_15.psv",delim = "|") #pipe separated
    
  1. read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv") #comma-separated values 
max_min_15_tsv <-read_tsv("max_min_15.tsv") #tab separated 
max_min_15_psv <- read_delim("max_min_15.psv",delim = "|") #pipe separated

14.Use setdiff to check for any differences among max_min_15_csv, max_min_15_tsc and max_min_15_psv

setdiff(max_min_15_csv,max_min_15_tsv,max_min_15_psv)
# A tibble: 0 x 3
# … with 3 variables: country <chr>, code <chr>,
#   per_capita_co2_emissions <dbl>

Are there any differences?

15.Reorder country in max_min_15 for plotting and assign to max_min_15_plot_data

-start with emissions_1988 THEN -use mutate to reorder country according to per_capital_co2_emissions

max_min_15_plot_data <- max_min_15 %>%
  mutate(country = reorder(country, per_capita_co2_emissions))
  1. Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data, 
       mapping = aes(x= per_capita_co2_emissions,y=country)) +
  geom_col() +
  labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
       subtitle = "for 1988",
       x=NULL,
       y=NULL)

  1. Save the plot directory with this post
ggsave(filename = "preview.png",
       path = here("_posts", "2021-03-03-reading-and-writing-data"))
  1. Add preview.png to yaml chuck at the top of this file

preview: preview.png