using computer simulation. Based on examples from the infer package. Code for Quiz 13.
Load the R package we will use.
Replace all the instances of ???. These are answers on your moodle quiz.
Run all the individual code chunks to make sure the answers in this file correspond with your quiz answers
After you check all your code chunks run then you can knit it. It won’t knit until the ??? are replaced
Save a plot to be your preview plot
set.seed(123)
Read it into and assign to hr
hr <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
col_types = "fddfff")
skim(hr)
Name | hr |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
gender | 0 | 1 | FALSE | 2 | fem: 260, mal: 240 |
evaluation | 0 | 1 | FALSE | 4 | bad: 153, fai: 142, goo: 106, ver: 99 |
salary | 0 | 1 | FALSE | 6 | lev: 93, lev: 92, lev: 91, lev: 84 |
status | 0 | 1 | FALSE | 3 | fir: 185, pro: 162, ok: 153 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
age | 0 | 1 | 40.60 | 11.58 | 20.2 | 30.37 | 41.00 | 50.82 | 59.9 | ▇▇▇▇▇ |
hours | 0 | 1 | 49.32 | 13.13 | 35.0 | 37.55 | 45.25 | 58.45 | 79.7 | ▇▂▃▂▂ |
The mean hours worked per week is: 49.3
hr %>%
specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
hours
<dbl>
1 36.5
2 55.8
3 35
4 52
5 35.1
6 36.3
7 40.1
8 42.7
9 66.6
10 35.5
# … with 490 more rows
hypothesize that the average hours worked is 48
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
hours
<dbl>
1 36.5
2 55.8
3 35
4 52
5 35.1
6 36.3
7 40.1
8 42.7
9 66.6
10 35.5
# … with 490 more rows
generate 1000 replicates representing the null hypothesis
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups: replicate [1,000]
replicate hours
<int> <dbl>
1 1 33.7
2 1 34.9
3 1 46.6
4 1 33.8
5 1 61.2
6 1 34.7
7 1 37.9
8 1 39.0
9 1 62.8
10 1 50.9
# … with 499,990 more rows
The output has 500,000 rows
‘Calculate’ the distribution of statistics from the generated data - Assign the output null_t_distribution - Display null_t_distribution
null_t_distribution <- hr %>%
specify(response = age) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "mean")
null_t_distribution
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 48.4
2 2 47.6
3 3 48.7
4 4 47.9
5 5 47.4
6 6 48.2
7 7 47.5
8 8 48.4
9 9 48.5
10 10 48.5
# … with 990 more rows
‘visualize’ the simulated null distribution
visualize(null_t_distribution)
‘calculate’ the statistic from your observed data
observed_t_statistic <- hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
calculate(stat = "t")
observed_t_statistic
# A tibble: 1 x 1
stat
<dbl>
1 2.25
get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_statistic , direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
If the p-value < 0.05? yes (yes/no) |
Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no (yes/no) |
‘hr_1_tidy.csv’ is the name of your data subset
hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
col_types = "fddfff")
‘Q: Is the average number of hours worked the same for both genders in hr_2?’
hr_2 %>%
group_by(gender) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | gender |
Variable type: factor
skim_variable | gender | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
evaluation | female | 0 | 1 | FALSE | 4 | fai: 81, bad: 71, ver: 57, goo: 51 |
evaluation | male | 0 | 1 | FALSE | 4 | bad: 82, fai: 61, goo: 55, ver: 42 |
salary | female | 0 | 1 | FALSE | 6 | lev: 54, lev: 50, lev: 44, lev: 41 |
salary | male | 0 | 1 | FALSE | 6 | lev: 52, lev: 47, lev: 46, lev: 39 |
status | female | 0 | 1 | FALSE | 3 | fir: 96, pro: 87, ok: 77 |
status | male | 0 | 1 | FALSE | 3 | fir: 89, ok: 76, pro: 75 |
Variable type: numeric
skim_variable | gender | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | female | 0 | 1 | 41.78 | 11.50 | 20.5 | 32.15 | 42.35 | 51.62 | 59.9 | ▆▅▇▆▇ |
age | male | 0 | 1 | 39.32 | 11.55 | 20.2 | 28.70 | 38.55 | 49.52 | 59.7 | ▇▇▆▇▆ |
hours | female | 0 | 1 | 50.32 | 13.23 | 35.0 | 38.38 | 47.80 | 60.40 | 79.7 | ▇▃▃▂▂ |
hours | male | 0 | 1 | 48.24 | 12.95 | 35.0 | 37.00 | 42.40 | 57.00 | 78.1 | ▇▂▂▁▂ |
Females worked an average of 50.3 hours per week
Males worked an average of 48.2 hours per week
Use ‘geom_boxplot’ to plot distributions of hours worked by gender
hr_2 %>%
ggplot(aes(x = gender, y = hours)) +
geom_boxplot()
‘specify’ the variables of interest are ‘hours’ and ‘gender’
hr_2 %>%
specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 36.5 female
2 55.8 female
3 35 male
4 52 female
5 35.1 male
6 36.3 female
7 40.1 female
8 42.7 female
9 66.6 male
10 35.5 male
# … with 490 more rows
‘hypothesize’ that the number of hours worked and gender are independent
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 36.5 female
2 55.8 female
3 35 male
4 52 female
5 35.1 male
6 36.3 female
7 40.1 female
8 42.7 female
9 66.6 male
10 35.5 male
# … with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours gender replicate
<dbl> <fct> <int>
1 36.4 female 1
2 35.8 female 1
3 35.6 male 1
4 39.6 female 1
5 35.8 male 1
6 55.8 female 1
7 63.8 female 1
8 40.3 female 1
9 56.5 male 1
10 50.1 male 1
# … with 499,990 more rows
‘calculate’ the distribution of statistics from the generated data
null_distribution_2_sample_permute <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t", order = c("female", "male"))
null_distribution_2_sample_permute
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 -0.208
2 2 -0.328
3 3 -2.28
4 4 0.528
5 5 1.60
6 6 0.795
7 7 1.24
8 8 -3.31
9 9 0.517
10 10 0.949
# … with 990 more rows
visualize the simulated null distribution
visualize(null_distribution_2_sample_permute)
‘calculate’ the statistic from your observed data
Assign the output observed_t_2_sample_stat
Display observed_t_2_sample_stat
observed_t_2_sample_stat <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
calculate(stat = "t", order = c("female", "male"))
observed_t_2_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 1.78
get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_2_sample_stat , direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0
‘shade_p_value’ on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
If the p-value < 0.05? no (yes/no)
Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes (yes/no)
The data this quiz is a subset of ‘HR’
Look at the variable definitions
hr_3_tidy.csv is the name of your data subset
hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv",
col_types = "fddfff")
Q: Is the average number of hours worked the same for all three status (fired, ok and promoted) ?
use ‘skim’ to summarize the data in ‘hr_anova’ by ‘status’
hr_anova %>%
group_by(status) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | status |
Variable type: factor
skim_variable | status | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
gender | promoted | 0 | 1 | FALSE | 2 | fem: 91, mal: 81 |
gender | fired | 0 | 1 | FALSE | 2 | mal: 98, fem: 98 |
gender | ok | 0 | 1 | FALSE | 2 | mal: 68, fem: 64 |
evaluation | promoted | 0 | 1 | FALSE | 4 | goo: 79, ver: 52, fai: 21, bad: 20 |
evaluation | fired | 0 | 1 | FALSE | 4 | bad: 77, fai: 64, ver: 30, goo: 25 |
evaluation | ok | 0 | 1 | FALSE | 4 | fai: 53, bad: 51, goo: 18, ver: 10 |
salary | promoted | 0 | 1 | FALSE | 6 | lev: 42, lev: 37, lev: 36, lev: 28 |
salary | fired | 0 | 1 | FALSE | 6 | lev: 59, lev: 40, lev: 39, lev: 25 |
salary | ok | 0 | 1 | FALSE | 6 | lev: 33, lev: 29, lev: 28, lev: 23 |
Variable type: numeric
skim_variable | status | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | promoted | 0 | 1 | 40.22 | 11.11 | 20.1 | 31.67 | 41.00 | 48.82 | 59.7 | ▆▇▇▇▇ |
age | fired | 0 | 1 | 38.95 | 11.23 | 20.0 | 29.82 | 38.80 | 48.75 | 59.9 | ▇▆▇▇▅ |
age | ok | 0 | 1 | 39.03 | 11.77 | 20.0 | 28.28 | 38.75 | 49.92 | 59.7 | ▇▇▆▇▆ |
hours | promoted | 0 | 1 | 59.29 | 12.53 | 35.0 | 49.90 | 58.65 | 70.35 | 79.9 | ▅▆▇▆▇ |
hours | fired | 0 | 1 | 42.37 | 9.15 | 35.0 | 36.20 | 39.20 | 43.80 | 79.6 | ▇▁▁▁▁ |
hours | ok | 0 | 1 | 47.99 | 11.55 | 35.0 | 37.45 | 45.75 | 55.23 | 75.7 | ▇▃▃▂▂ |
Employees that were fired worked an average of 42.4 hours per week
Employees that were ok worked an average of 48 hours per week
Employees that were promoted worked an average of 59.3 hours per week
Use ‘geom_boxplot’ to plot distributions of hours worked by status
hr_anova %>%
ggplot(aes(x = status, y = hours)) +
geom_boxplot()
‘specify’ the variables of interest are ‘hours’ and ‘status’
hr_anova %>%
specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 49.6 promoted
2 39.2 fired
3 63.2 promoted
4 42.2 promoted
5 54.7 promoted
6 54.3 fired
7 37.3 fired
8 45.6 promoted
9 35.1 fired
10 53 promoted
# … with 490 more rows
‘hypothesize’ that the number of hours worked and status are independent
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 49.6 promoted
2 39.2 fired
3 63.2 promoted
4 42.2 promoted
5 54.7 promoted
6 54.3 fired
7 37.3 fired
8 45.6 promoted
9 35.1 fired
10 53 promoted
# … with 490 more rows
‘generate’ 1000 replicates representing the null hypothesis
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours status replicate
<dbl> <fct> <int>
1 38.4 promoted 1
2 41 fired 1
3 66.1 promoted 1
4 46.1 promoted 1
5 65.1 promoted 1
6 43.7 fired 1
7 35.1 fired 1
8 40.9 promoted 1
9 38.4 fired 1
10 67.7 promoted 1
# … with 499,990 more rows
The output has 500000 rows
*‘calculate’ the distribution of statistics from the generated data**
null_distribution_anova <- hr_anova %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")
null_distribution_anova
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 0.00878
2 2 0.359
3 3 1.16
4 4 0.00524
5 5 2.25
6 6 0.259
7 7 2.61
8 8 0.0457
9 9 0.0830
10 10 0.000339
# … with 990 more rows
‘visualize’ the simulated null distribution
visualize(null_distribution_anova)
‘calculate’ the statistic from your observed data
observed_f_sample_stat <- hr_anova %>%
specify(response = hours, explanatory = status) %>%
calculate(stat = "F")
observed_f_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 110.
get_p_value from the simulated null distribution and the observed statistic
null_distribution_anova %>%
get_p_value(obs_stat = observed_f_sample_stat , direction = "greater")
# A tibble: 1 x 1
p_value
<dbl>
1 0
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
If the p-value < 0.05? yes (yes/no)
Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no (yes/no)
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-05-12-hypothesis-testing"))